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Abstract. Originally developed as a tool for computing the stable homo-

topy groups of spheres in topology, chromatic homotopy theory has proven to

be highly interdisciplinary, possessing seemingly fundamental connections to
number theory and the mathematics of high-energy physics. On the arithmetic

side, it can be interpreted as a Brave New class field theory, with geometric

models like tmf acting as a spectral version of arithmetic geometry. On the
physical side, these complex-oriented cohomology theories act as receivers of

“index maps” central to both concrete computations and geometry in quan-

tum field theory. In this talk, I will propose a chromatic Langlands program
that unifies notions of ramification, globalization, and equivariance appearing

in these three fields. The approach taken involves modular and global equiv-
ariance for topological automorphic forms, cyclotomic trace as a description

of geometric and algebraic ramification, and chromatic redshift; and, as sug-

gested by the name, should be thought of as a spectral version of the Langlands
program. Broadly speaking, the program aims to give a unified description of

transchromatic geometry, and is expected to produce new computational tools

in stable homotopy theory. Applications outside of topology include a rigorous
interpretation of Witten’s equivariant index theory and arithmetic geometry

over the field with one element.
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1. Arithmetic Globalization

In algebra, we study Z using the category of finitely-generated abelian groups.
In stable homotopy theory, we study the sphere spectrum S using the category of
finite spectra, Spω. Since Spec(Z) is the Balmer spectrum of ZModω, we think
of Spec(S) as being the Balmer spectrum of Spω (i.e. the moduli stack of formal
groups), which looks like this:
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K(0) = HQ

Arithmetic

Chromatic

This stack has a vertical “chromatic direction” labeled by height ∈ N and a
horizontal “arithmetic direction” labeled by prime in SpecZ. Traditionally, we
would localize at some arithmetic prime p and get a category filtered by height.
Then we can identify K(n) as the “residue class field” at the point of height n and
En as the “universal deformation about the height n stratum”, i.e. the ring whose
spec is the infinitesimal neighborhood of the height n point. We can use these to
construct chromatic fracture squares which build up to the entire p-local category.
We have thus “globalized” in the chromatic direction, yielding MU(p)

1.
What if we instead globalize in the arithmetic direction? In his thesis ([12]),

Mazel-Gee pointed out that this is precisely the procedure that gives us cohomology
theories like tmf . More generally, by work of Behrens-Lawson ([5]), we should
have a spectrum I call TAFn, “topological automorphic forms”, which acts as an
arithmetically global version of En. At height 1, this is K-theory. At height 2, it
is tmf . We see, moreover, that these are related; for instance, we have a canonical
map tmf → KO[[q]], which is induced by the the Tate elliptic curve ([9]). After
2-localization, we can give a (connective) version of this that also involves ku:

tmf(2) ko(2)

tmf1(3)(2) ku(2)

([11]).

These are all induced by maps of moduli stacks. We have maps BGm →
BGTate → M̂ell → Mfg which induce maps on the associated E∞-rings by flat-
ness and Goerss-Hopkins obstruction theory.

Notice that it is not only the global sections that are relevant here, but also
sections of higher covers; for instance, KU is the sections of the double cover of

1More precisely, all of these are presentations of spectral stacks, so we really need to take their
Hopf algebroids. This is why there are many different Morava E-theories coming from different
formal groups: the universal deformation of any height n formal group will induce a Lubin-Tate

spectrum which is a Galois extension of the K(n)-local sphere. The “standard” Morava E-theory
is the version coming from the so-called Honda formal group, which is just a choice made for the
sake of convenience.
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BGm, and Tmf1(3) is the sections of the cover of M̂ell associated to the congru-
ence subgroup Γ1(3) ⊂ SL2(Z). This is the first appearance of level structures in
chromatic homotopy. In the theory of modular forms, a level structure is a choice
of subgroup Γ of the modular group. Then modular forms with level Γ structure
are not sections (of the relevant sheaf) over Mell, but rather over the étale cover
associated to that subgroup.

The K(n)-localization of TAFn is a product of homotopy fixed-point spectra of
Lubin-Tate spectra associated to the universal deformations of certain arithmeto-
geometrically described formal groups. The following theorem, which is Corollary
14.4.8 in [5], is a general version.

Theorem 1.1. We have an isomorphism

LK(n)TAFGU (K) ≃

 ∏
x∈Sh[n](K)(F̄p)

EhAut(x)
n

hGal(F̄p/Fp)

.

Here TAFGU (K) is a specific TAF spectrum whose construction I won’t go into,
and SH [n](K)(F̄p) is the height n stratum of a certain Shimura variety.

For K-theory, this looks like

LK(1)KO ≃ E
hC2⋊Gal(F̄p/Fp)
1 .

For tmf this looks like

LK(2)TMF ≃

 ∏
S supersingular elliptic curve

EhAut(S)
n

hGal(F̄p/Fp)

.

The reason this works is that a formal group Γ of height n has Landweber-exact
universal deformation, which gives rise to a Lubin-Tate spectrum EΓ of height n
(which admits a canonical E∞ structure by Goerss-Hopkins obstruction theory).
This spectrum will be a Galois extension of the K(n)-local sphere, with Galois
group given by the associated Morava stabilizer group GΓ = Aut(Γ)⋊Gal(F̄p/Fp).

Thus we can think of TAF as something like an arithmetically global Galois
extension of the height n sphere spectrum. This is surprising, since Rognes proved
([13]) that the global sphere spectrum is separably closed. Rognes’s theorem also
indicates that the expression “something like” is doing a lot of work here (as does
the undefined term “height n sphere spectrum”). To interpret this, we can turn
to number theory. The role of the spectrum En as a Galois extension of LK(n)S
is analogous to the role played by extensions of Qp in local class field theory. In
this metaphor, we should think of S as analogous to the integers, with complicated
extensions that are most easily studied locally. If we want to study this theory
globally, we can do so via the theory of modular Galois representations.

The following classical theorem is due to Eichler-Shimura for k = 2, Deligne for
k > 2, and Deligne-Serre for k = 1.

Theorem 1.2. Let f ∈ Sk(Γ0(N), χ) be a newform2 and ℓ prime. Write f =∑
a(n)qn, and let Kλ be a finite extension of Qℓ which contains all the a(n)s and

the image of χ. Write Oλ for its ring of integers. Then there is a continuous

2A modular form which vanishes at ∞ and spans a one-dimensional subrepresentation of the
Hecke algebra.
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irreducible representation ρf,λ : Gal(Q̄/Q) → GL2(Oλ) such that for any prime
p ∤ Nℓ,

(1) This representation is unramified at p;
(2) The trace of the p-Frobenius element is a(p); and
(3) The determinant of the p-Frobenius element is χ(p)pk−1.

Generalizing this to arbitrary “heights” gives us the Langlands program: a fun-
damental correspondence between automorphic forms (more generally automorphic
representations) and representations of Galois groups. The first key element of
Chromatic Langlands is the fact that this is exactly what we have found in the the-
ory of topological automorphic forms. We have automorphic representations (TAF
with level structure) which give rise, after localization, to extensions of the local
base (En) and a representation on some product of these extensions modulated by
(almost) arithmetically global data associated to the original representation. I will
describe how this works at height 1 in a moment; generalizing this to height 2 and
up is the first major goal of this program.

Notice that, in order to completely capture the behavior of these representations,
we need to incorporate all level structures (due to ramification issues). A similar
phenomenon is expected to occur in the chromatic case, which necessitates the
inclusion of modular equivariance. That is to say, we would like to define for each
n some notion of “TAFn with level structure”, where the various levels assemble
into some kind of genuine equivariant E∞-ring. This is done using “Drinfeld level
structures”, which generalize the notion of a level structure as a certain kind of
discrete subgroup.

At height 1, this is almost classical: modular-equivariant K-theory is Atiyah’s
“real K-theory”, the C2-equivariant ultracommutative ring spectrum denoted KR.
This spectrum arises as the global sections of the TAF sheaf on BGm, with global
sections given by KO and sections on the double cover given by KU . Since the
action is given on Gm by multiplication by −1, which is invertible, this can be
enhanced to a sheaf with transfers and thus yields an equivariant ring. This theory
admits an arithmetic interpretation in terms of the Adams conjecture and the
Riemann zeta function; see [1] and [15].

The height 2 analogue of this is, however, more problematic. Over the integers,

the stack M̂ell has fundamental group C2, with the only nontrivial connected cover
given by inversion on elliptic curves. This is because a level N > 0 structure on an
elliptic curve roughly corresponds to an isogeny of index N , which will be ramified
(at every point) unless N is invertible. The more primes we invert, the larger
the fundamental group will get, all the way through the classical complex version
with fundamental group SL2(Z). So to get every level structure without destroying
the requisite power operations, we need to rationalize. But that destroys all the
information we’re trying to get!

We have a couple of options here. We can remove the isogenies of bad index,
as Davies does in [8], but that still loses some information. We can invert primes
“situationally” using the method of [14], which loses as little information as possible
while still constructing this as an “ordinary” equivariant spectral stack. Or, last
but not least, we can follow Atiyah’s approach to Adams operations and try to
incorporate global equivariance. This is probably the right answer, but it will
require some new definitions for equivariant spectral stacks and some machinery to
“combine” the equivariances. This is likely to involve a certain known map from
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the Strickland ring Stn, which classifies Σn-equivariance, to the Drinfeld ring, DA,
which classifies modular equivariance. The details, however, are not yet known.

2. Conformal Field Theory

An n-dimensional QFT is a symmetric monoidal functor Z : Cobn−1,n → Vect
(or Hilb). We can replace our cobordism category with Cob(d,d+n (1 ≤ n ≤ ∞), the
symmetric monoidal (∞, n)-category of cobordisms between d-manifolds, in which
case we have to replace Vect with some appropriate “n-category of vector spaces”
as well. It isn’t known how to do this in general, but at least for the case n = 2 we
can replace it with the Morita 2-category of algebras.

We can choose different cobordism categories by equipping our manifolds with
different geometric structure. If we take oriented smooth manifolds, we get TQFTs.
If we take oriented manifolds with conformal structure, we get CFTs. Often, we
can do this for a large class of manifolds in a compatible manner using a particular
construction called a “quantum σ-model”, which is generally constructed by some
kind of geometric procedure that works for various manifolds3. In this case, we
can take the symmetric monoidal trace of the theory, which is the value of Z on
a d + 1-dimensional torus. (Physically, this can be interpreted as a probability
amplitude for the creation and annihilation of a pair of d-branes.) This is the
topologist’s version of the “partition function”, and gives rise to a genus, i.e. a ring
homomorphism from the classical cobordism ring Ω (for some notion of cobordism)

to a specified target ring. Cases of particular interest include the Â-genus for spin
manifolds (which is the “height 1” version and describes a spinning particle) and the
Witten genus for string manifolds (c.f. Ochanine) (which is the “height 2” version
and describes a superstring). Both of these cases arise from the quantization of
σ-models; see [16].

These cases have the nice property that they lift to orientations of ring spectra,
specifically the ring spectra KO and tmf . In fact, this is the origin of tmf : Witten
conjectured its existence as a spectral lift of modular forms that would serve as a
target for a spectral Witten genus. The spin orientation of K-theory was originally
constructed by Atiyah-Bott-Shapiro using Clifford algebras ([3]), later shown to be
E-infinity by Joachim in 2004 ([10]). The string orientation of tmf was constructed
(as an E-infinity orientation from the start) by Ando-Hopkins-Rezk in 2010 ([2]).

Computational evidence suggests that these genera are related. If we assume a
notion of S1-equivariant spin structure and formally apply the localiation theorem
for equivariant K-theory, we find that a string structure on M is equivalent to
an equivariant spin structure on its free loopspace LM (which we think of as an
“infinitesimal thickening” of M ; although that should really be the formal loop
space, but I’m not opening that can of worms). To be precise, what Witten argues
is that that the equivariant index of the Dirac operator on LM is the Ochanine
genus of M . This is not quite rigorous, so it invites attempts at formalization.
The fact that the targets are both a form of TAF (and we can also get versions
valued in e.g. tmf with level structure as well as a version at height 0) suggests
that we should think of this as some kind of arithmetically global transchromatic
phenomenon.

3Though they are often constructed in a uniform manner, σ-models make perfect sense if we
fix a manifold.
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3. Transchromatic Ramification

The algebraic K-theory of an E∞-ring R, K(R), is defined as the group comple-
tion of the core of its compact module category. Note that we can extend this to
spectral stacks by taking the category of coherent sheaves. (This is traditionally
done using algebraic vector bundles, but taking coherent sheaves is equivalent for
connective rings, so we’ll use that definition here.) Note that the sphere spectrum
is the algebraic K-theory of the “field with one element” in the sense that it is the
K-theory of the category of finite sets. This is another hint towards the relationship
between stable homotopy theory and number theory discussed in section 1. The
main reason algebraic K-theory is relevant to the chromatic story, however, is the
following “Redshift theorem”.

Theorem 3.1. If R is an E∞-ring of height n ≥ 0, K(R) has height n+ 1.

This theorem was proven last year in [7].
Algebraic K-theory is very hard to compute, so we use “trace methods” to ap-

proximate it.

Definition 3.2. Let R be an E∞-ring. The topological Hochschild homology of R,
THH(R), is the geometric realization of the simplicial E∞-ring given by the bar
complex of R.

We are interested in an S1-equivariant version of this. We definte a cyclotomic
spectrum to be a spectrum with S1-action equipped with S1-equivariant isomor-
phisms E ≃ EtCp for all primes p. Here EtCp is the Tate fixed-point spectrum
EhCp/EhCp

, and the isomorphism is called the Frobenius. (We can equivalently de-

fine a cyclotomic spectrum to be a genuine S1-spectrum, in which case we replace
the Tate fixed-points with the ordinary homotopy fixed-points.)

Lemma 3.3. THH(R) has a natural cyclotomic structure induced by permutations
of the bar complex.

Definition 3.4. The topological cyclic homology of R is the spectrum TC(R) =
Map(Striv, THH(R)), where the mapping spectrum is taken in the category of
cyclotomic spectra.

There is a natural map K → TC called the cyclotomic trace. There is also
a natural “forgetful” map TC → THH, and the composition of these two is a
map K → THH called the Dennis trace. Ayala-Mazel-Gee-Rozenblyum give a
geometric interpretation of this ([4]), where these notions are all extended to stacks
in the evident way.

Theorem 3.5. Let X be a spectral stack. Then we have a natural identification
THH(X) ≃ O(LX). This identification induces an identification of TC(X) with,
roughly speaking, the S1-equivariant functions on LX compatible with all iterates
S1 → S1 → X up to “universal indeterminacy”.

Basically, TC is like THH, but equivariant with respect to all transformations
of S1, including rotations, folds, etc. Note that this suggests we should think of
TC as the global sections of the equivariant free loop space of a ring—precisely the
space that appears in Witten’s equivariant index conjecture!

They also give us a nice geometric interpretation of the trace in terms of mon-
odromy. I won’t state the theorem here, but I’ll describe the idea. Let E be a
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vector bundle, and choose a loop γ, say based at a point x. Then γ induces a
monodromy automorphism Ex → Ex. If we take the trace of this automorphism
(in the basic linear algebra sense), we have defined a function on LX which is in
some sense cyclotomically invariant. To be specific, if we take a collection of loops
γ1, . . . , γn whose composition is γ, the trace will be unchanged by cyclic permuta-
tion of these loops. This follows from the first thing you ever learned about trace
in linear algebra, namely its cyclic invariance, and says that our function respects
the natural operations on loops. This is the cyclotomic trace.

Traditionally, trace can be used in algebraic number theory to detect separability
and therefore ramification.

Theorem 3.6. A finite field extension L/K is separable iff TrL/K is not identically
zero.

More generally, we can detect ramification using Hochschild homology.

Theorem 3.7. An algebra A/k is separable iff HHk
∗ (A,M) = 0 for any bimodule

M . (Here HHk denotes Hochschild homology over k.)

Remark 3.8. The triviality of Hochschild homology here is equivalent to the state-
ment that the Hochschild homologies of k and A are equivalent, which generalizes
the nondegeneracy condition for the trace.

This theory also exists in a spectral context due to Berman ([6]).

Definition 3.9 (Berman). Let ∗ → Y → X be maps of spectral schemes (where
∗ is any scheme but can be thought of as a point). Write f for the induced map
Ω∗Y → Ω∗X (where the loop spaces are defined as pullbacks in the evident way),
and i for the induced map ∗ → Ω∗X. Take F to be the fiber of O(Ω∗X) →
f∗O(Ω∗Y ), a sheaf on Ω∗X. That is, F is the sheaf of “functions on Ω∗X which
vanish on loops that lift to Y ”. Then we say Y/X is

(1) Unramified if i∗F ≃ 0 (i.e. F is trivial at constant loops)

(2) Totally ramified if F ≃ i∗(F0) for some sheaf F0 on ∗ (i.e. F is trivial away
from constant loops).

We should think of the loops here as analogous to the residue class field of a local
field, both being a home for infinitesimal extensions. Then this appears directly
analogous, since a finite extension of local fields is totally ramified iff the extension
of residue class fields is trivial, and unramified if the residue degree is equal to the
degree of the extension. In fact, this is more than just an analogy.

Theorem 3.10 (Berman). When restricted to number fields, this coincides with
the classical definition of unramified and totally ramified extensions.

Berman tells us that if an extension splits into unramified and totally ramified
parts, we can compute the ramified part by “ramified descent”.

Theorem 3.11 (Berman). Write RamS(A/R) for the fiber of THHS(R)⊗R A →
THHS(A) (where the superscript denotes relative Hochschild homology of an ex-
tension R → A over the base ring S), and let A → k be a k-point of SpecA.
Write IkA/R for the fiber of the extension map k ⊗R k → k ⊗A k. Then A/R is

unramified at k iff RamR(A/R) ⊗A k = 0; and if it is totally ramified at k, then
RamS(A/R)⊗A k = THHS(k)⊗ IkA/R.
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The geometric interpretation of K/TC/THH suggests that this notion of rami-
fication should lift to TC and the cyclotomic trace. This has applications to tran-
schromatic homotopy, since increasing chromatic height can be thought of as split-
ting into totally ramified and unramified parts via the connected-etale sequence.
Also, we usually present the universal deformation about the height-n stratum (at
a fixed prime) as the ring Landweber-classified by the Lubin-Tate formal group,
which classifies ramified abelian extensions of local fields. So we think that apply-
ing K to an arithmetically global height n cohomology theory should give us an
arithmetically global height n + 1 cohomology theory which splits into the height
exactly n+1 part and height ≤ n part, of which the first is ramified and the second
unramified. This is like how Tate K-theory is an elliptic cohomology theory, but
also a straightfoward extension of KO; and, moreover, it is classified by a degen-
erate elliptic curve, so it makes sense that it has a “singular” relationship to tmf .
This is witnessed by the splitting of Hecke operators for modular forms into a sum
of the Atkin operators (which is a decategorification of the Adams operations) and

an operator that rotates M̂ell about ∞, the point classifying the degenerate elliptic
curve.

But, since TC classifies monodromy on the cyclotomic loop space, this splitting
should be something that can be described using the same formalism as Witten’s
equivariant index theory! In fact, Witten himself has phrased this in terms of rami-
fication, and used similar ideas (minus the higher algebra and chromatic homotopy)
to realize geometric Langlands strictly in terms of quantum field theory. Lifting
this perspective to higher algebra, therefore, is a highly promising endeavor.
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